Extension of Functions with ω-Rapid Polynomial Approximation

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polynomial Approximation of Functions

Constructive proofs and several generalizations of approximation results of J. H. Bramble and S. R. Hubert are presented. Using an averaged Taylor series, we represent a function as a polynomial plus a remainder. The remainder can be manipulated in many ways to give different types of bounds. Approximation of functions in fractional order Sobolev spaces is treated as well as the usual integer o...

متن کامل

The best uniform polynomial approximation of two classes of rational functions

In this paper we obtain the explicit form of the best uniform polynomial approximations out of Pn of two classes of rational functions using properties of Chebyshev polynomials. In this way we present some new theorems and lemmas. Some examples will be given to support the results.

متن کامل

Polynomial Approximation and ω rφ ( f , t ) Twenty Years Later

About twenty years ago the measure of smoothness ω φ (f, t) was introduced and related to the rate of polynomial approximation. In this article we survey developments about this and related concepts since that time. MSC: 41A10, 41A17, 41A25, 41A27, 41A30, 41A36, 41A40, 41A50, 41A63, 26A15, 26B35, 26B05, 42C05, 26A51, 26A33, 46E35 keywords: Moduli of smoothness, K-functionals, realization functi...

متن کامل

Polynomial Approximation of Functions in Sobolev Spaces

Constructive proofs and several generalizations of approximation results of J. H. Bramble and S. R. Hubert are presented. Using an averaged Taylor series, we represent a function as a polynomial plus a remainder. The remainder can be manipulated in many ways to give different types of bounds. Approximation of functions in fractional order Sobolev spaces is treated as well as the usual integer o...

متن کامل

A polynomial approximation for arbitrary functions

Abstract We describe an expansion of Legendre polynomials, analogous to the Taylor expansion, to approximate arbitrary functions. We show that the polynomial coefficients in Legendre expansion, thus, the whole series, converge to zero much more rapidly compared to the Taylor expansion of the same order. Furthermore, using numerical analysis with sixth-order polynomial expansion, we demonstrate ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Approximation Theory

سال: 1995

ISSN: 0021-9045

DOI: 10.1006/jath.1995.1069